We use synthetic organic chemistry to prepare new organic compounds and functional materials based on organic compounds. We have well-established laboratories and instrumentation facilities for the synthesis, characterization and studying the photochemical and photophysical properties of the newly synthesized materials.

The major ongoing projects include studying plasmon-molecule coupling in organic dye loaded metal nanoparticles, development of flexible organic single crystals, synthesis of novel luminescent organic materials and DNA analogues. These materials are then explored for applications in various fields ranging from cancer therapeutics to sensors and flexible electronic devices.

Recent Research Highlights

  • Highly sensitive chemosensors developed for biologically relevant thiols and fluoride anions.

  • Organic single crystals showing flexible optical waveguide and thermosalience developed.

  • Our recent results help to understand the role of chemical structure in plasmon-molecule coupling.

  • Dye-loaded metal nanoparticles find application as PDT and cellular imaging agents.


​​Luminescent Organoborons
Boron-containing organic compounds are a well-accepted class of compounds having excellent photophysical properties. These molecules are synthesized by complexing boron with organic chelates and are stabilized by the delocalization of lone-pair electrons of the hetero-atoms of the chelates into the vacant p-orbital on boron. Apart from the unique photophysical properties, the ease of synthesis and structural robustness make boron-containing molecules ideal for a variety of applications. We follow a simple self-assembly based pathway for the synthesis of boron containing molecules and use commercially available starting materials thereby minimising the number of synthetic steps. We have been successful in synthesising a variety of functionalized molecules for optoelectronics and biological applications such as flexible optical wave-guiding, anti-counterfeiting, sensing, water purification and photodynamic therapy.


ACS Appl. Mater. Interfaces, 2022
Front. Chem., 2021
Cryst. Growth Des., 2021

Chem. Eur. J., 2020

Mater. Chem. Front., 2020

Chem. Eur. J., 2018

Dye-loaded Nanocomposites
Plasmon-molecule coupling has emerged as a new modality for the development of photonic devices and optically responsive materials. Metal nanoparticles in combination with dyes provide a platform to construct hybrid materials whose photophysical properties may be tuned at the nanoscale. Molecules which absorb light near to the surface plasmon resonance absorption peak of metal nanoparticles can induce changes in the photophysical and electronic properties of metal nanoparticles through plasmon-molecule interactions. We prepare nanocomposites of common dye molecules using metal nanoparticles and study their photophysical and photochemical properties. We have shown that by systematically varying the functionalities on the dye molecules it is possible to modulate the photophysical and photochemical properties of the nanocomposites and allowed them to be used as photosensitizers for photodynamic therapy and as sensors for biologically relevant substrates.



J. Photochem. Photobiol. A: Chem., 2022

ACS Appl. Nano Mater., 2022

ChemPlusChem, 2021
Analyst, 2020
Chem. Commun., 2019
ChemPlusChem, 2018

Nucleic Acid Analogues
Synthetic nucleic acids are widely used in fundamental research and also for applications in medical diagnosis and drug development. Some of them have been commercialized as drugs and several are undergoing clinical trials. We aim to develop new analogues of nucleosides and nucleic acids for therapeutic applications. We have shown that nucleoside analogues containing the hydrogen bonding face of the natural bases can be synthesized and that these molecules exhibit anti-cancer activity. We are also interested in developing new methodologies based on supramolecular chemistry to synthesize nucleic acid analogues which will add a new dimension to the nucleic acid chemistry.


ChemistrySelect, 2020